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ANALYTICAL TREATMENT OF NORMAL CONDENSATTON SHOCK*

By Heybey

INTRODUCTION

The oondensation of water vapor in an alr stream has the following
consequences:

1. Acquisition of heat‘(liberated heat of vaporization)

2. Loss of mass on the part of the flowing gas (water vapor is
converted to liquid)

3. Change in the specific gas constants and of the ratio k of
the specific heats (caused by change of gas composition)

A discontinuous change of state is therefore connected with the
condensation; schlieren photographs of supersonic flows in two-
dimensional Laval nozzles show two intersecting oblique shock fronts
that in the case of high humidities may merge near the point of inter-
section into one normal shock front. The following discussion will
deal with normal shock fronts only; it will be assumed that the
velocity vector may he considered as being at right angles to the
shock front (one-dimensional theory). “All flow properties directly
ahead of the shock will be designated by the subscript 1, all those
directly behind the shock by the subscript 2, all thoss referring
?o a stagnation condition by the subscript o, and all those applying
in the narrowest cross section of the nozzle F* by an asterisk.
[NACA comment: Particular attention is called to the fact that
capital T denotes stagnation temperature only when used with the
subscript o. Otherwise it denotes static temperature.] The sonic
velocity will be denoted by a, and the flow velocity by w.

The following equation exists for the sum of kinetic and caloric
energy (enthalpy i = cpT) per unit mass of the flowing gas:

*Analytische Behandlung des geraden Kondensationsstosses.
Heeres-Versuchsstelle, Peeneminde, Archiv Nr. 66/72, Mirz 30, 1%42.
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Directly behind +the shock the constant total energy 1, has been
supplemented by a quantity of heat energy per wnit mass g as follows:

2L i
z—+ 1p =15+ q =15 =

1k + 1
o >y

2
1
ZE =T (1)

Because 1ig' > iy, for the description of the flow behind the shock
a higher stagnation tempervature must be specified than that which

chaxécteriZed the flow before the shock.

I will become apparent later that the values of 1py, pg, and
F* must also be changed. From equations (1) and (1') for a¥*, is
obtainsd

a%'

-=a>1 - (2a)
as Q was thus defined as an abbreviation for §;L3 another equa-
tion may be written

%‘2 %} = Q% (>1) (2v)
From equation (2b) it follows thét with ig' = ip + g
2 =1+ 4 (3

(=N

0

The quantity Q (inherently positive) is cleerly determined by the
quantity of hesat of vaporization liberated; @ increases with than
quantity.

The loss in nmass of flowing gas due ‘o condensation, as well as
the alteration of the gas constants and of %k will be assumed toe be

" so small that they may be disregarded. Other conditions being the
same (for example, relative humidity = 120 percent), this assumpti-n
becomes more exact in proportion as T, is lower. If the a.r Jlows
into the lLaval nozzle from the free atmosvhere with T, aT:roxi-
mately 273° K, the gravimetric proportion of saturated water vapor is
2 to 3 percent (this proportion remains the same thrcugh all changes
of gtate so long as these changes occur without gain or loss of water
vanor).
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~Accordingly, the following equations apply:

Py W1 = pp Vg - (4)
Pl + Py le = Do + P2 sz , (5)
151 D2

- 6
1Ty P2 T2 (6)

The equations (4), (5), and (8) express the constancy of the
mass flow, the momentum, and the specific gas constants R. Together
with equations (1) and (1'), these equations constitute the basic
equations of a simplified theory ol the normal condensation shock.

If the condensation occurs in a subsonic flow, the associated pressure
change, because it is propagated at sonic speed, quickly spreads
throughout the whole flcw. Ths same pressure srread applies to all
aspects of the change of state. No shock phenomenon can develop.
Therefore, in the following discussion a rfundamental assumption is
that wy 1s a supersonic velocity.

CHANGE OF STATE AT SITE CF SHOCK

A suitable combination of the five basic equations leads through
a rather long mathematical process, which will be omitted here, to
the following relation:
— g¥1e
Wz Wl WZ a

(7)

1 Wy Wo —~a*2

For a*' = a* (Q = 1) this becomes the Prandtl formula wy wp = a*Z,

By introduction of the abbreviations

ax =% and ==X

equation (8) is obtained

2. qt (8)

'Wl Xl

l

From equation (7) is obtained
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X, X, X Q
1L "2
2ok °
1 Xl Xz ———
or
1+ x
%% - %p Q,xll'" +1=0 (7a)

From these equations, an equation to be used subsequently 1g obtained
2
ey (1 +%°) = x5 (1 +x°) (7b)

and by further conversion

(7¢)

which is another form of egquation (7).

The solution of equation (7a) defines xz as a fraction of xj
and Q. With the ald of this equation, simple expressions for pz/pl,

T /Ty, Mas/Ma;, ard pz/p) may be derived. [NACA comment: Ma,
Mach number.

From equations (4) snd () it follows that

P2

5 (9)

O
o ol
O PR

If the well-known relation between T/T, and w/a* is applied
to T;/T, and Tp/Ty', Dy consideration of equation (2b) also, the
following equation is obtained:

T 7 k-1 X 2

T ksl T2
AR (10)
T,. k-1 _ 2

L - R_TZ— Xl

Becauge furthermore,

Mao Wo a1 Wo /’

= A

Maq T Wy ap Wiy

=3 13|
N I
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it follows that

. 1 - k.“l b'e 2
Map %z kel TL (11)
Maq © x k-1 2
1 A -l
k+l 2

k-l 2 2 2k
E-Z__Q_’f}_l s S S M (12)
pl- xz‘[_-—l.{-:.llxz— l_g-_lxz

k¥l L k1l L

The expression on the right is derived from the middle expression
by the application of egquation (7b).
The solution of equation (7a) is
. 1+ x2 /(1 + x12)2 — 4Q2x;2
2 zQxl

Because x5, a ratio of velocities, must be a real number, from the
previous equation an upper limit is obtained for Q; the lower limit
is by definition Q = 1. It ig evidently true that

2
1+ Xl
< QL —m—
b
Because in the supersonic region a;—> 1, accordingly the absolute

value of the root is found to be

(xlz -1) 2 N/(l + X1°)% — 4@%x1%2 = 0

In order to decide the sign of the root, x; being fixed and Q
being variable, the values Xy, way assume for each of the two signs
must first be determined. For the variation of xp with Q' it
appears that

Xz (l + Xlz)

Q1 + %)2)2 ~ 40Py 2

BXZ

59 +

where the absolute value of the root is in the denominator. With
the minus sign, Xxp 1is a continually decreasing function of Q,
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whereby it follows from equation (13) that
X ZXp 21 (14a)

Correspondingly, with the plus sign (x; increasing with Q) it is
found that

1 (14v)

Nll——'
A

X2

HA

1
In the first case, the air flow directly behind the shock 1s always
moving at supersonic velocity; in the second case, always at subsonic

. 1+X12
velocity. Only for Q = Qpyx = —5%
1

is exactly sonic velocity

found in both cases.

The first possibility is supported by experimental findings. In
the schlieren photographs, Mach waves or shock fronts hoth of which
can arige only at supersonic velocities may be observed behind the
shock or at least at a certain distance downstream. If subsonic
velocity existed directly behind the shock, a subsequent constriction
of the cross section of the flow filaments would have to occur (in
order to produce a minimum cross section)., This course of the flow is
improbable because the shock always occurs at a point where the walls
diverge downstream. Therefore the pcsitive sign must be chosen for
the root

1+ xlz + N/(l + xlz)2 -~ 4Q2x12
Xy = ere) (74)

and equation (14a) is obtained. The normal condensation shock effects

a change from one supersonic veloo1 ity o ﬁwotl*“ cupevrgonic velocity.

The nomograph (fig. 1) shows the “relation tetveen Q, ¥, and xp

a8 determined by equation (7d8). In regard tc the end point of the Q
scale, see the remarks at the end of this sectiomn.

After the sign of the root has been detsrmined, xp = wp/a*' is
clearly a function of x7 and Q. The same relation 1s therefore true
of the quotients in equations (8) to {12). WNo change is effected in
this respect if the quotients are multipliied by Xy, p1/0; Tl/To:
Maq, or Pl/Po because these gquantities are alsgo clearly functions
of X = wj/a*. Because the quantity x; is in turn clearly a func-

tion of the Mach number Maj immediately ahead of the shock and Q
ig clearly a function of g in accordance with equation (3), the
following principle is obtained: :
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Pressure, density, temperature, Mach number, and velocity imme-

. diately behind a normal condensat ion. shock are clearly determined by

the Mach number at which the sghock occurs and by the quantity of heat
liberated.

Thus both these quantities must be known if determinations of
the conditions directly behind the shock are desired (asswuming that
Po, Po, To, and 8a* are known). Instead of the Mach number, the
given quantity may, of course, be w /a* Py /Pys P1/Po Ty /Ty, or
F*/F because in the supersonic reglon all t%ese guantities may be
expressed ag functions of each other.

At what Mach number (or temperature) the supercooled vapor
condenses, in what quantity the water is nrecipitated, and how much
heat is accordingly sunplied to the alr stream, are questions that
the resources of gas dynamicsz are insufficlent to answer; hence,
Ma; and q must be regarded here as variables that are independent
of one another. However, in accordance with equation (13), there is
for every value of x; (or Ma- ) a maximum for @, and hence also
for g. Therefore, if the covdensatlon occurg at a certain Mach
number Maj, +the liberation of morc heat than a certain maximum
determined by Maj is impossible. From equations (13) and (3)
is obtained '

2 2
<. (x3~ - 1)
0= q Sig =" (13a)
4%, 2

For x1 =1, g = 0, Hence the normal condensation shock never
occurs in the narrowest cross section of the nozzle; supersonic
velocity must first Lave been attained.

With consideration of equations (13) and (l4a), the limits may be
determined between which, with a given value of x, (that is, with a
given site of the shock), the quotients in equations (8) to (12) must
lie. From vhat has been said in comnection with equation (14a), it
is evident that x, decreases as Q increages. In accord with equa-
tion (8), the same relation is also true for WB/Wl, whereby

v

2

W 1 +x

1= 2 ___21___ (8a)
le

Y

]

In accordance with equation (4), the quotient pg/p acts in the
contrary manner 1
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(sa)

l.._l
A
IO
= |eS
A

1+ le

It is evident from equation (10) that Tg/Tl increases simultanecusly
with Q; that is

242
T 1T+ x
15 2 2 ( 1) (10a)
= 1”k+l4xz(l_k-lxz)
1 kvl "1

— = — A= o ith i si
Y1 o ) decreasesg with increasing Q (because
wpfwy and T1/Tp decrease).

The ratio

Jk+l k-1 X 2
Mas Z 7 %1 1
22

T = A =
13.1 1! 1 Mal

1z (11a)

Because pz/pl and Tz/Tl increase, pz/pl also must increase
in accordance with equation (6). If Q = Qusyx, bthe root in equa-
tion (7d) is eliminated and the equation becomes: :

2Qpaxt1Xz = 1+ X7

From equation (12) is derived

< e <
ts = k+ 1] kL 2 (12a)
k+1 71

The limits in the left side of equations (8a) to (12a) are valid
for Q =1, that is, for the case in which no condensation shock is
pregsent at all. It is evident that:

The normal condensation shock effects an increase 1n pregsurs,
density, and temperature, whereas velocity and Mach number diminigh.

The ordinary normal compression shock, which occurs when a flow
meets superior pressure, has these same characteristics. Nevertheless,
the compression shock must be regarded as something different in
principle from the condensation shock, which is initiated by the intro-
duction of a quantity of heat. The difference is shown by the fact,
among others, that the compression shock always produces subsonic
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velocity. Also in such a case the ratio wz/wl = l/xl2 decreases
with increasing xj, whereas in the case of the condensation shock

it increases, as may be seen from the derivative that may be obtained
from equation (74):

X
>(2) 5(5\ 2q (ax, - 35)
1, _ 1/ _ - 1 1 >0
aXl - axl -

2 2.2 2 2
xq N/(l + X)) —4Q7x;

because

Q,> 1 and Xl> Xz

The same statements apply for the absolute value of the velocity
wp. In regard to the compression shock, this follows from the Prandtl

equation wp = a*/xl; in regard to the condensation shock, from the
fact that if xz/xl increases with x3, xp, and therefore wp = a¥*'iy
must also increase. The quotient pz/pl acts in the opposite manner.

W 2
In the case in which 5%-: \/E i i and py = p; =Ty =0, the

formula presented in equation (7) is inapplicable. For as soon as
this extreme condition is approached, the concepts and therefore the
equations of continuity that were used in the derivation of equa-~
tion (7) no longer apply.

If this inapplication is disregarded for the moment, equation (7)
is valid for all shocks occurring at finite nozzle cross sections
(Xl < A/E—éf%}. The condition expresgsed in equation (13) in conjunc-

tion with equation (7) gives
1 (1. A
Qax = 5 {3 + *1
\ 1 //

a Tunction that increases with xq 1f x3 > 1. If the qusntity X

is allowad to approach its maximum value JEfi—%,

absolute upper limit for @ 1is obtained as follows

an (unattainable)

q

Q,ma = —————eee & 1,424
AT
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To this value there corresponds an absolute maximum value for the
quantity of heat liberated; from equation (13a) is obtained

i
= — = 1.027 1
qméx mex = F_ o
Thus no more heat than this can be added by a normal condensation
shock under any circumstances. If for example T, = 273° C, with

op = 0.238 calorie

gram degreg 'ne following is obtained:

: caloris
“Gmax max ¥ 6.7 T

In figure 2, Qpax and in figure 3, (q/ig) are shown as functions

RATIOS ©Do' /Py, Po'/Pos, AND FX' /Fx
Increase of Entropy

It was pointed out in the Introduction that for the description
of the flow behind the normal condensation shock a stagnation temper-
ature To' > Ty mnust be specified. In the following discussion, it
will be shown, first by means of a special case, that F*, p,, and
Do @also must be altered.

It follows from equation (1lla) that for Q = Quy the following
equation applies

Maz = (Maz) = l

min
In this special case, exactly sonic velocity occurs directly
behind the shock. Because thils occurrence, however, is always present
in the narrowest cross section of a flow, the shock cross section
Fg > F* 1is therefore to be regarded as the minimum cross section with
regpect to the flow behind the shock.
On the same basis, the relations must be written in this case

Po = p*' and by, = p*!

From equations (9a) and (12a) it also follows, that if py /P, and
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P1/P, are expressed in terms of x; according to known procedure
and if the expressions_for p*/po and p*/po are introduced

L
. k-3
- 2 ._E:Le)
o o (e 1\ 2 (1 kL X1 x4 ox
1 + Xq
k L
k-1 -

1 (k+1 kK — 1
I ) ( 5 ) (1 T ‘12) (L + x2) p* # p*

Because a normal isentropic flow exists behind the shock (if a second
condensation 1s excluded),

L
p¥! p* /o >k—l
o' P | (k + 1 j
= —-k_..
v et | (2 )
po’ Py | + 1/ i
therefore
Po! *1
— = 1 15a
- (15a)
Po' p*!
_— i e 15b
2 - B (15v)

The relations that have thus been found for Q = Qpgx, nemely,
Po' ¥ Pos Po' # Po, and F*' > F*, will be proved for @ # Quax
also and at the same time will be more precisely expressed.

If po'/po equals K and the calculations are started from the

identity
\

*d|;s*l*d;,_.
*dlpo
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by use of known gas-dynsmic‘'formulas and equation (12) the following
expression is obtained:
El

' <__k.l 2>kl
_ Dol K+l 1 2 2k
K = = = <} + 3¢ - l_Qxlx?> (16)

_ k-1
_—
K+l X2

In view of equation (7d), it is evident that the ratio p,'/p, is a

function of Q and x;, that 1s, the ratio depends upon the quantlity
of heat q Lliberated by the condensetion and upon the Mach number
directly ahead of the shock. Thus the ratio can have the value of 1
only for certain special values of these variables. In order to obtain
gome basis for the determination of the possible range of values of K,
the behavior of K with the varlation of @ and x; will next be
investigated.

With regard to Q (x; being held constant), it is sufficient to
confine the investigation to the expression

- K

k-1
K - E—-1.02 2 _ 2k
K= <} -5 %2 > (l + X I QX1X%>

Then
2kl
7 - k-1 |ox ,
gg=k21il<l—§+:{"‘22> SQEECZ (1 +:®) -ma (x22+1):l

k-1 2
"'XlXZ <l _k____—'f‘ 1 Xz)

By application of equation (7b), the quantity in the brackets becomes
0 and therefore

The ratio p,'/p, decreases (at a given value of wl/a*) with increasing
Q. The maximum value of K 1is thus reached at the minimum value of
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Q = 1. In this case, a¥*' = a¥ and X3Xp = 1. Thus from equa-

tion (186) is obtained o

ZK l .
Kpax = |%1 1 - (17a)

: P?'

This formula is naturally the same as that applying to the ordinary
normal compression shock for po’/po. The maximum value that Ky,
can assume through the variation of Xy 1is accordingly reached when

X =1 with Kpoy max = 1. This may also be mathematically shown

2k-1 [, 2
@K e x 2k ok ¥1 (x7% - 1)
= - ;
dx k +1 gmax 2
1 (.2 k-1
{xl " EIT/
'k + 1

Because 1 € X7 £ 4 the derivative is negative (except at the
1 =Nk =1

limlts of the range of values of x; where it disappears). For
x¥x1 = 1 there is thus a maximum value of X, ., (namely, Kp., =1

and for x; = %ﬁsz a minimum value (namely, Kp.y = O), which gt
the same time 1s the smallest conceivable value for K (because
Po'/Po cannot become negative). Hence

1
2 <1 (18)
O

e}

0

A
3

The ratio of stagnation pressure Po'/Po lies between O and 1 and
agssumeg the second value only if the condensation shock is nonexistent.
(Because in the derivation of this theorem the sign of

N/(l + xlz)2 ~ 4Qxy 2 plays no part, it is valid for both signs.)

Accordingly it is permissible to describe K as a throttling factor
as is customary in compression shock theory.

When Q = Qpgx, & minimum value of K 1is reached for the given
value of Xy

L+x" leyp1/  x~-1_ 2
Knin = 2 2 <} T k¥l ) (17b)
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This relation is the same as equation (15b). In this case, the

veloclty directly behind the shock wp 1is equal to the sonic veloc-
| 1l +x 2
i 3 1
ity a*'. The inequality 1 Qg -—F7—
1

inequality Kmax =z K> Kmin‘

corresponds to the

Figure 4 shows the quantities Kp,y and Ky, as functions of

Xq. When xp = /\/%‘j:% both quantities become equal to O. However,
in accordance with the remarks at the end of the last section, this
result is only of theoretical interest. :

Now, conversely, @ rather than x; will be considered as given
and fixed. It is found that

2ok
dK__ 2k (l’% x12>k-l ox;, k-1 _ 2 2
Sxy E+1 SRR (l—k+l 0% ke (1+x®)-ax (1+x%)]

k-1
kel
<1-k+l x2>
k-1 _2 2
+ <1 - T x2>(x]_ - 1)(Qxp — x7)

By application of equation (7b), the quantity within the brackets
becomes O, Furthermors, because from equations (8) and (8a)

Wz <
Wz =X =N \G - 0

for all values of x> 1

oK
d — < 0
axl <

The ratio D,'/p, (at a given value of Q) decreases with increasing

Mach number.

Thus according to this reasoning also, the throttling factor
' (Q)

assumes the theoretical minimum value Kpin =~ =0 corresponding to
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k+1
rmax TNk - 17 , :
with the given value of Q, K becomes largest. According to egua-
tion (13)

At the smallest value of X that is in agreement

Because for x; > 1 the expression on the left side decreases with
decreasing xj, the smallest possible value of Q corresponds to the

smallest possible value of x; denoted by W. Accordingly, W 1is
determined by the equation

1+wz_Q
W B
whereby
W=Q+JQ° -1
1 +'w2
If =7 is substituted for @, it becomes evident that (because

W > 1) in order to create the identity

W=0+/@% -1

if the root is understood to signify ite absolute value. When this
value is inserted in equation (16) (xo becoming equal to 1) the
following is obtained:

L
k_(Q) =.l+(Q+§/é2—l)2 k+l[l_k—l<Q+ ; _:>z]1k‘1

2 k+1

(19)

The right side of equation (19) is formally the same as that of equa-
tion (17b) if X7 1is replaced by W = Q +a Q2 — 1., The mathematical

bagis for this is that with a fixed value of xj the quantities Quay
and X7 are so related by the same equation as the quantities @

and (xl)min =W with a fixed value of Q, +that in both cases the

expression for K 1in equation (16) undergoes the same simplification.
Directly behind the shock, sonic velocity exists in both cases; this
velocity thus occurs in every case wherein either the maximum quantity
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of heat i1s liberated at a given Mach number, or the quantity of heat
being given, the condensation takes place at the lowest possible Mach

nunber. Figure 5 shows Kﬁa§Q) as a function of Q.

Because it was assumed (see Introduction) that the specific gas
constant R 1s not altered by the shock, an equation may be written

Po' Po'
o _ 1 *9_.2 1 (20)

because it is true that Q =1 and K £ 1. The ratio of the stagna-
tion densities cannot be greater than 1.

Furthermore, because the loss of mass in the flow due to the
precipitation of the condensed water is to be considered insignificant
and disregarded, the following statement of continuity is valid:

F*'p*'&*' - F*p*a*

By consideration of equations (15a) and (2a), the following equation
is obtained:

O
e}
|+

and because of equation (20)

Po

F*! = F¥*
Q N

> F* (21)

The second equality sign is valid only when Q = 1 and po‘/po = 1,
that is, when there is no shock at all. For the description of the
flow behind the normal condensation shock, a larger minimum cross
section must be specified.

Being a discontinuous, that is an irreversible, process, the
condensation shock involves an increase in entropy. If the entropy
per unit of mass of the flowing gas ahead of the shock is written as
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and that behind the shock is written as
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8= ¢y In T, =R 1n p,

8" =cp InTy' =R 1n py'
with the aid of equation (2b) the following equation is obtained:
As =8' —s=c,n Q% —RInk (22)

In accordance with equation (16) the following statement applies:

The increase of entropy due to the normal condensation shock is a
function of the Mach number at which the shock occurs and of the
quantity of heat liberated. In the case of an ordinary normal com-
pression shock, the first member on the right side of equation (22)

is lacking; consequently, with a given throttling factor, the increase

of entropy due to a compression shock is smaller than that due to a
condensation shock.

FLOW PRCPERTIES AT EXIT CROSS SECTION CF NOZZLE

The flow properties in the exit cross section Fp of a wind-

tunnel nozzle are the same as those in the whole test sectiocn of the
tunnel and are therefore of especial interest. All flow properties
referring to Fp will be denoted by the subscript E; all flow

properties that have undergone alteration due to a condensation shock
will be denoted by a prime (except that those directly behind the
shock will have the subscript 2 as previously). Behind the shock a
normal isentropic flow exists to which the known gas-dynamic laws can
be applied. These laws connect the conditions at any selected cross
gection F downstream of the shock with the conditions directly
behind the shock; these conditions are therefore functions of

X1 = wy/a* and Q. Hence Fgp, x;, and Q are determinative of
the conditions at the exit cross section Fp. If two of these
quantities are held constant, the conditions at the exit cross section
depend only upon the third quantity.

As previously shown, the gquantity po/po' increases both with

fixed Q and increasing xj (a transfer of the shock downstream)
and with fixed x; (fixed shock site) and increasing Q. Therefore,
if Fg and Q are held constant (or Fp and xl), in accordance

with equation (21), F¥' gnd therefore F*'/EE also increases with

increasing x; (or with increasing Q). If, however, F¥*'/fp
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increases, then in the region of supersonic flows (which is what is
actually found behind the shock) ©pg'/ps's eg'/Pos and Tg'/T,
increase, while WE'/a*' and the Mach number Magp' decrease.

With a fixed exit cross section Fp and a given value of F¥,
the flow properties in the nozzle are determined. 4

If Q also is regarded as fixed in accordance with equations (2a)
and (2b) neither a*' nor To' ave altered. Thus wy' decreases

and Tp' increases with increasing 7. From the continuity rule,
pg'Wg' = constant, it follows furthermore that pgp' increases and
from the equation of state pEf/pE‘TE' = constant that pgp' also
increases. Because Maj increases with x; and ¢ vremains constant
with @ (compare equation (3)), the conclusion is made that:

If in a nozzle the Mach number at which a certain specified
quantity of heat of condensation is supplied to the flow is increased
(that ig, if the shock occurs further downstrean), at the exit cross
section the Mach number and the absolute value of the velocity are
less but the pressure, density, and temperature are greater,

If in addition to FE, the Mach number Ma; 1is considered (that
ls, x5 also) as fixed, then according to equation (2b) T,' increases

with increasing Q and Tg' thus increases all the more. However,
a¥*!' also increases while WE‘/a*’ decreases. Hence no general state-

ment concerning wgp' is possible. This impossibility 1s also evident

from another line of reasoning. Namely, if the exit cross section and
the location of the shock coincide wp' = Wp; according to equa-

tion (7d), wo (which equals x; Qa¥) is a decreasing function of Q.
If on the contrary the exit cross section is assumed as infinitely large

k+ 1
k-1

WE' = a*Q /

where wg'- 1is an increasing function of Q. In accordance with the
continuity rule, the behavior of the density with increasing @Q thus
also depends upon the size of Fp, that is (at & given F¥), upon
the Mach number for which the nozzle is constructed. In order to
investigate the variation of PE' as a function of Q, the calcula-
tions may again be started from the equation of state by writing

. pE' TEI
ep'Tg' = Py S
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"From Fpeg'wg' = F¥p*a* 1s derived

By

and with T.' = T, Q7 (compare equation (2b)) is obtained

Tr'!

: F* 2 a¥ “E
LY = ¥ - QF S
Pr B 0 EE WE' T,

Because according to equation (2a), Qa* = a*', if Tp'/T.,' 1is also
expressed in the known manner in terms of wg'/a*’

- <WE' 2

e Y T T _a*'>
° Fg v '
il

pp'Tg' = P*T

The equation of state thus assumes the form

[ (N2
k-1 [¥m Y\
Q [} T k¥l <5¥T)j]

WE‘
a*!

pE‘ = constant

Differentiation with respect to Q yields

— . WE'
3om" E_ Ll _ kel @Lﬂ _ ) L k-1 /‘@_’ﬂ
Pg % mi\ax /| 975 1t T \an

a
- = constant

) ( gé_)

Because WE'/a*' is a decreasing function of Q, o) & _J<o and
apEt 3q

"Sd” > 0 where Pr' 1ncreases with Q.

The over-all result is as follows:

If in a nozzle, the site of the shock being fixed, the gquantity
of heat of condensation liberated increases, the Mach number at the
exit cross section decreages while the pressure and the temperature
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increase. The behavlior of the density and of the absolute value of
the velocity depends upon the Mach number for which the wind tunnel
is built.

If a normal condensation shock occurs in a nozzle, the same
statements apply. [NACA comment: It is believed that this sentence,

completely redundant in the present form, was intended to read: "If
an oblique condensation shock occurs...".] As a congsequence of the

shock, q 1increases from q = 0 to a value ¢q > O.

In the absence of a shock, a Mach number equal to the reduced
Mach number that would exist at the exit cross section if a shock had
occurred will occur at a point in the nozzle upstream of the exit
cross section. The quotients p/p,, p/pg, T/T,, and w/a*, which
are clearly functions of the Mach number, must at that point have the
same value as the corresponding exit cross section gquotients pE'/po‘,
ep' /oo’y Tg'/Ty', and wp'/a¥' if a shock occurs. Hence it follows
that

1 P ) 1 p 1 T 1 T 1 W- H '
BE_ - O <1, PE_ = 2 < 1, E _ o _ Qz > 1, and xE_ Eg* =qQ>1
D Do p Po T To w a
That is,

If In a nozzle, as a congequence of a normal condensation shock,
the Mach number st the exit cross section 1s reduced, at the exit
cross section the pressure and the density are lower and the teumpera-
ture and the absolute velocity are higher than would correspond to
the same Mach number in the absence of the shock (this Mach number
would then occur at a cross section upstream of the exit cross section).

If the last two of the three quantitites Fp, X7, and Q are
held conetant, that is, if the site of the shock and the quantity of
heat of condensation liberated are regarded as fixed given values,
then with increasing Fp pressure, density, and temperature naturally
decrease, while the Mach number and the absolute velocity increase, for
downstream from the shock a normal isentropic flow exists. Answering
the question of how the quotients opp'/pp, eg'/ep, Tp'/Tg, Meg' /Map,
and WE'/WE behave as functions of Fg 1is not equally easy.

By consideration of the last of these quotients first, in accord-
ance with equation (2a), the following equation is applicable:

WE|
vg' a¥!
R

a¥*
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from which by formal development

a(‘i) i a<5¥7> g’ a<§>

vg /) a¥ dFg  a*' OFg
Fr 2
s (%8

\a*

Introduction of the known general relation between F#*/F and w/a*,
a process of computation, which will here be omitted, leads to

o) L k1l (-y,z
Na¥/ L w o kil \a¥/
aF  F

T -

W ! 2
o2 oer(ey e (el
B/ 1 VE k+l \a*¥'/ k+l \a¥,
OFp  Fp w 2 2
E EVE v '\ /5
wr) mr (&) 1

According to equation (21), F*' /Fgp > F*/Fp and therefore

WE'/a*‘ < WE/a* and the bracketed expression is thereby greater
than 0. The gquotient WE'/WE thus increases with Fgp; it assumes
its least value if Fg coincides with the shock front cross section,

W' W
and its greatest value if Fp — ®. In the first case, ﬁ%—'= ;%3
A VE' _ Vg k + 1 -
and in the second case aXT T 5% < Q/ET:TT? By consideration of

equation (8), the following equation is obtained:

1

Qf{é;;éQ (23)

The gas velocity at the exit cross section can increase up to @
. times the original velocity.

The expression on the left side of equation (23) is equivalent
to wgp/wy <1 (compare equation (8a)); that on the right side is

Q > 1. Equation (23) explains the fact already mentioned that,
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assuming F* +to be given, upon the occurrence of a normal condense-
tion shock the behavior of the veloclty at the exit cross section
depends upon the magnitude of this shock. The velocity decreases if
the exit cross section decreases and increases if the exit cross
section increases. This relation is evident. The shock effects so
great an increase of pressure, density, and temperature that the
velocity is first decreased. Because the flow contains a greater
total amount of energy after the shock, with a sufficiently great
expansion, that is, with a sufficiently marked decrease in the pro-
portion of caloric energy, the velocity must finally become greater
than it could have been without the shock.

In order to determine the exit cross section % at which the
velocity would remain precisely the same, the calculation may be
started from the expression

1
X wg’ i k-1 (WE‘\ZJK"I
v Fg e | TiGT \axr
e T Fx T il
Fp T ’ 5 KL
VB |, _ k-l (.z)
a% N k+1 \a¥

According to equation (21), F*'/F* = Q/K. By inserting the relation
wg' = wg = Wy, the following equation is obtained:

5 \2 -
("j;) T il
%/ Tk -1 @k _ k-1

The quentity K is a function only of the fixed selected values x
and Q. Corresponding to ﬁE/a* in accordance with the known relation
a certain value of F*/FE exists from which ¥y may be calculated.

' 1 and K<1 ﬁE\2<k+l that is, ¥y has a finit
Becagse Q > an <1, by I at is, Fg has a finite
value.

From the continuity expression pp'wp' = pp¥p and equation (23)
ig obtained

X or'
13 F 4 (24)
QX =pp TQ

In the cross section ﬁE: pr' = pg; upstream of that point,
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tg' > pg, and downstream pp' < pp. In spite of the compressing

. effect of the condensation shock, the density at the exit cross section

can be less than it would have bsen in the abience “of +the' shock.
As a consequence of the energy equation

i =1 + ¢

Q

the following equation may be written

. 2
B L o
Z vt =g tipta
where with 1 = cpT it follows that
VLE_.Z_/YTE_‘Z__J_-(;T 1__'1_‘:.@_1_..’.
2 \3rg? =% ' T 4

Because wgp'/wgy continuously increases with increasing Fgp, Ty'/Tg

nust continuously decrease. The least value of this quotient is
reached when wy'/wg = Q. For thie case, from the preceding equation,

if q 18 expressed in terms of @ in accordance with equation (3),
the following equation is obtained:

2 1
Y—g—(Qz—l)+cpTE<$—‘EE—- >=1o (@ -1)

Because

2
E§~ Te = 1
27+ % *E = Yo

it follows from the previous equation that

(T__'_\ &
G min

The maximum value for Tg'/Ty 1s T3/T; (condensation shock occurring

at the exit cross section). Therefore the following equation is
obtained (compare equation (10)):

1.—3:}-](22. T !
2 k+1 B 2
iz 20 (25)

Tk A
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As may be seen, the statement is confirmed that, as the result
of a normal condensation shock (Q ¥ l), the temperature at the exit
cross section is raised.

For the ratio of the Mach numbers, the following relation is
obtained: -

MaE ! WE ' a.E WE ! TE
Map

“vg ey’ vy | Tg

Thus the ratio increases with Fp and as Fp—>® the ratio approaches
the value 1, in accordance with equations (23) and (25). The least
value is that of MaB/Mal. Accordingly, by use of equation (11) the
following equation is obtained:

x 1L - %" Map'
"z k+1 < B <1 (26)
xp A _kL_ 2=Mey =

k+l 72

This equation corroborates the fact that the normal condensation shock
reduces the Mach number at the exit cross section.

The equation of state yields

Pg' ) eg' Tg'
Pg e Tg

The pressure ratio is, like op'/pp and Tg'/Ty, a decreasing func-
tion of Fg. By use of equations (12), (24), and (25) the following
equation is obtained:

2 2k
1+ X7 - EIT'QXlXZ . PE'
> =z Q (27)
l_..k...:.}.xz _'PE -
k+1 71 '

It is evident that the
sure at the exit cross

In equations (23)
expressed in terms of

normal condengation shock increases the pres-
section.

to (27), %, may in all cases be clearly
x; and Q, -in accordance with equation (7d).
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—

The results previously derived are valid without change in

.. respect to any nozzle cross section downstream of the shock F that

may be chosen t6 substitute for Fp. Therefore the results-may be
summarized as follows:  With increasing distance downstream of the
site of a condensation shock, the ratios p'/p, +'/p, and T!'/T
decrease while Ma'/Ma and w'/w increase. The numerical values
of the flow properties constituting the numerators and the values
of those constituting the denominators vary in the same manner.
Therefore it may be concluded that:

Downstream of a normal condensation shock, the pressure, the
density, and the temperature decrease more sharply with increasing
nozzle cross section and the Mach number and the velocity increase
more sharply than in the absence of the sghock.

Tranglation by Edward S. Shafer,
National Advisory Committee
for Aeronautics.
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